dltk.core package¶
dltk.core.activations module¶
-
dltk.core.activations.
leaky_relu
(inputs, alpha=0.1)[source]¶ Leaky ReLu activation function
Parameters: - inputs (tf.Tensor) – input Tensor
- alpha (float) – leakiness parameter
Returns: a leaky ReLu activated tensor
Return type: tf.Tensor
-
dltk.core.activations.
prelu
(inputs, alpha_initializer=<tensorflow.python.ops.init_ops.Constant object>)[source]¶ Probabilistic ReLu activation function
Parameters: - (tf.Tensor) – input Tensor
- alpha_initializer (float, optional) – an initial value for alpha
Returns: a PreLu activated tensor
Return type: tf.Tensor
dltk.core.losses module¶
-
dltk.core.losses.
dice_loss
(logits, labels, num_classes, smooth=1e-05, include_background=True, only_present=False)[source]¶ Calculates a smooth Dice coefficient loss from sparse labels.
Parameters: - logits (tf.Tensor) – logits prediction for which to calculate crossentropy error
- labels (tf.Tensor) – sparse labels used for crossentropy error calculation
- num_classes (int) – number of class labels to evaluate on
- smooth (float) – smoothing coefficient for the loss computation
- include_background (bool) – flag to include a loss on the background label or not
- only_present (bool) – flag to include only labels present in the inputs or not
Returns: Tensor scalar representing the loss
Return type: tf.Tensor
-
dltk.core.losses.
sparse_balanced_crossentropy
(logits, labels)[source]¶ Calculates a class frequency balanced crossentropy loss from sparse labels.
Parameters: - logits (tf.Tensor) – logits prediction for which to calculate crossentropy error
- labels (tf.Tensor) – sparse labels used for crossentropy error calculation
Returns: Tensor scalar representing the mean loss
Return type: tf.Tensor
dltk.core.metrics module¶
-
dltk.core.metrics.
abs_vol_difference
(predictions, labels, num_classes)[source]¶ - Calculates the absolute volume difference for each class between
- labels and predictions.
Parameters: - predictions (np.ndarray) – predictions
- labels (np.ndarray) – labels
- num_classes (int) – number of classes to calculate avd for
Returns: avd per class
Return type: np.ndarray
-
dltk.core.metrics.
crossentropy
(predictions, labels, logits=True)[source]¶ Calculates the crossentropy loss between predictions and labels
Parameters: - prediction (np.ndarray) – predictions
- labels (np.ndarray) – labels
- logits (bool) – flag whether predictions are logits or probabilities
Returns: crossentropy error
Return type: float
-
dltk.core.metrics.
dice
(predictions, labels, num_classes)[source]¶ - Calculates the categorical Dice similarity coefficients for each class
- between labels and predictions.
Parameters: - predictions (np.ndarray) – predictions
- labels (np.ndarray) – labels
- num_classes (int) – number of classes to calculate the dice coefficient for
Returns: dice coefficient per class
Return type: np.ndarray
dltk.core.residual_unit module¶
-
dltk.core.residual_unit.
vanilla_residual_unit_3d
(inputs, out_filters, kernel_size=(3, 3, 3), strides=(1, 1, 1), mode='eval', use_bias=False, activation=<function relu6>, kernel_initializer=<tensorflow.python.ops.init_ops.VarianceScaling object>, bias_initializer=<tensorflow.python.ops.init_ops.Zeros object>, kernel_regularizer=None, bias_regularizer=None)[source]¶ - Implementation of a 3D residual unit according to [1]. This
- implementation supports strided convolutions and automatically handles different input and output filters.
[1] K. He et al. Identity Mappings in Deep Residual Networks. ECCV 2016.
Parameters: - inputs (tf.Tensor) – Input tensor to the residual unit. Is required to have a rank of 5 (i.e. [batch, x, y, z, channels]).
- out_filters (int) – Number of convolutional filters used in the sub units.
- kernel_size (tuple, optional) – Size of the convoltional kernels used in the sub units
- strides (tuple, optional) – Convolution strides in (x,y,z) of sub unit 0. Allows downsampling of the input tensor via strides convolutions.
- mode (str, optional) – One of the tf.estimator.ModeKeys: TRAIN, EVAL or PREDICT
- activation (optional) – A function to use as activation function.
- use_bias (bool, optional) – Train a bias with each convolution.
- kernel_initializer (TYPE, optional) – Initialisation of convolution kernels
- bias_initializer (TYPE, optional) – Initialisation of bias
- kernel_regularizer (None, optional) – Additional regularisation op
- bias_regularizer (None, optional) – Additional regularisation op
Returns: Output of the residual unit
Return type: tf.Tensor
dltk.core.upsample module¶
-
dltk.core.upsample.
get_linear_upsampling_kernel
(kernel_spatial_shape, out_filters, in_filters, trainable=False)[source]¶ - Builds a kernel for linear upsampling with the shape
- [kernel_spatial_shape] + [out_filters, in_filters]. Can be set to trainable to potentially learn a better upsamling.
Parameters: - kernel_spatial_shape (list or tuple) – Spatial dimensions of the upsampling kernel. Is required to be of rank 2 or 3, (i.e. [dim_x, dim_y] or [dim_x, dim_y, dim_z])
- out_filters (int) – Number of output filters.
- in_filters (int) – Number of input filters.
- trainable (bool, optional) – Flag to set the returned tf.Variable to be trainable or not.
Returns: Linear upsampling kernel
Return type: tf.Variable
-
dltk.core.upsample.
linear_upsample_3d
(inputs, strides=(2, 2, 2), use_bias=False, trainable=False, name=u'linear_upsample_3d')[source]¶ - Linear upsampling layer in 3D using strided transpose convolutions. The
- upsampling kernel size will be automatically computed to avoid information loss.
Parameters: - inputs (tf.Tensor) – Input tensor to be upsampled
- strides (tuple, optional) – The strides determine the upsampling factor in each dimension.
- use_bias (bool, optional) – Flag to train an additional bias.
- trainable (bool, optional) – Flag to set the variables to be trainable or not.
- name (str, optional) – Name of the layer.
Returns: Upsampled Tensor
Return type: tf.Tensor