from __future__ import unicode_literals
from __future__ import print_function
from __future__ import division
from __future__ import absolute_import
import tensorflow as tf
from dltk.core.units.residual_unit import vanilla_residual_unit_3d
[docs]def resnet_3d(inputs,
num_classes,
num_res_units=1,
filters=(16, 32, 64, 128),
strides=((1, 1, 1), (2, 2, 2), (2, 2, 2), (2, 2, 2)),
mode=tf.estimator.ModeKeys.EVAL,
use_bias=False,
activation=tf.nn.relu6,
kernel_initializer=tf.initializers.variance_scaling(distribution='uniform'),
bias_initializer=tf.zeros_initializer(),
kernel_regularizer=None, bias_regularizer=None):
"""
Regression/classification network based on a flexible resnet
architecture [1] using residual units proposed in [2]. The downsampling
of features is done via strided convolutions. On each resolution scale s
are num_convolutions with filter size = filters[s]. strides[s]
determine the downsampling factor at each resolution scale.
[1] K. He et al. Deep residual learning for image recognition. CVPR 2016.
[2] K. He et al. Identity Mappings in Deep Residual Networks. ECCV 2016.
Args:
inputs (tf.Tensor): Input feature tensor to the network (rank 5
required).
num_classes (int): Number of output channels or classes.
num_res_units (int, optional): Number of residual units per resolution
scale.
filters (tuple, optional): Number of filters for all residual units at
each resolution scale.
strides (tuple, optional): Stride of the first unit on a resolution
scale.
mode (TYPE, optional): One of the tf.estimator.ModeKeys strings: TRAIN,
EVAL or PREDICT
use_bias (bool, optional): Boolean, whether the layer uses a bias.
activation (optional): A function to use as activation function.
kernel_initializer (TYPE, optional): An initializer for the convolution
kernel.
bias_initializer (TYPE, optional): An initializer for the bias vector.
If None, no bias will be applied.
kernel_regularizer (None, optional): Optional regularizer for the
convolution kernel.
bias_regularizer (None, optional): Optional regularizer for the bias
vector.
Returns:
dict: dictionary of output tensors
"""
outputs = {}
assert len(strides) == len(filters)
assert len(inputs.get_shape().as_list()) == 5, \
'inputs are required to have a rank of 5.'
relu_op = tf.nn.relu6
conv_params = {'padding': 'same',
'use_bias': use_bias,
'kernel_initializer': kernel_initializer,
'bias_initializer': bias_initializer,
'kernel_regularizer': kernel_regularizer,
'bias_regularizer': bias_regularizer}
x = inputs
# Inital convolution with filters[0]
k = [s * 2 if s > 1 else 3 for s in strides[0]]
x = tf.layers.conv3d(x, filters[0], k, strides[0], **conv_params)
tf.logging.info('Init conv tensor shape {}'.format(x.get_shape()))
# Residual feature encoding blocks with num_res_units at different
# resolution scales res_scales
res_scales = [x]
saved_strides = []
for res_scale in range(1, len(filters)):
# Features are downsampled via strided convolutions. These are defined
# in `strides` and subsequently saved
with tf.variable_scope('unit_{}_0'.format(res_scale)):
x = vanilla_residual_unit_3d(
inputs=x,
out_filters=filters[res_scale],
strides=strides[res_scale],
activation=activation,
mode=mode)
saved_strides.append(strides[res_scale])
for i in range(1, num_res_units):
with tf.variable_scope('unit_{}_{}'.format(res_scale, i)):
x = vanilla_residual_unit_3d(
inputs=x,
out_filters=filters[res_scale],
strides=(1, 1, 1),
activation=activation,
mode=mode)
res_scales.append(x)
tf.logging.info('Encoder at res_scale {} tensor shape: {}'.format(
res_scale, x.get_shape()))
# Global pool and last unit
with tf.variable_scope('pool'):
x = tf.layers.batch_normalization(
x, training=mode == tf.estimator.ModeKeys.TRAIN)
x = relu_op(x)
axis = tuple(range(len(x.get_shape().as_list())))[1:-1]
x = tf.reduce_mean(x, axis=axis, name='global_avg_pool')
tf.logging.info('Global pool shape {}'.format(x.get_shape()))
with tf.variable_scope('last'):
x = tf.layers.dense(inputs=x,
units=num_classes,
activation=None,
use_bias=conv_params['use_bias'],
kernel_initializer=conv_params['kernel_initializer'],
bias_initializer=conv_params['bias_initializer'],
kernel_regularizer=conv_params['kernel_regularizer'],
bias_regularizer=conv_params['bias_regularizer'],
name='hidden_units')
tf.logging.info('Output tensor shape {}'.format(x.get_shape()))
# Define the outputs
outputs['logits'] = x
with tf.variable_scope('pred'):
y_prob = tf.nn.softmax(x)
outputs['y_prob'] = y_prob
y_ = tf.argmax(x, axis=-1) \
if num_classes > 1 \
else tf.cast(tf.greater_equal(x[..., 0], 0.5), tf.int32)
outputs['y_'] = y_
return outputs