Source code for dltk.io.augmentation
from __future__ import unicode_literals
from __future__ import print_function
from __future__ import division
from __future__ import absolute_import
import numpy as np
from scipy.ndimage.interpolation import map_coordinates
from scipy.ndimage.filters import gaussian_filter
[docs]def flip(imagelist, axis=1):
"""Randomly flip spatial dimensions
Args:
imagelist (np.ndarray or list or tuple): image(s) to be flipped
axis (int): axis along which to flip the images
Returns:
np.ndarray or list or tuple: same as imagelist but randomly flipped
along axis
"""
# Check if a single image or a list of images has been passed
was_singular = False
if isinstance(imagelist, np.ndarray):
imagelist = [imagelist]
was_singular = True
# With a probility of 0.5 flip the image(s) across `axis`
do_flip = np.random.random(1)
if do_flip > 0.5:
for i in range(len(imagelist)):
imagelist[i] = np.flip(imagelist[i], axis=axis)
if was_singular:
return imagelist[0]
return imagelist
[docs]def add_gaussian_offset(image, sigma=0.1):
"""
Add Gaussian offset to an image. Adds the offset to each channel
independently.
Args:
image (np.ndarray): image to add noise to
sigma (float): stddev of the Gaussian distribution to generate noise
from
Returns:
np.ndarray: same as image but with added offset to each channel
"""
offsets = np.random.normal(0, sigma, ([1] * (image.ndim - 1) + [image.shape[-1]]))
image += offsets
return image
[docs]def add_gaussian_noise(image, sigma=0.05):
"""
Add Gaussian noise to an image
Args:
image (np.ndarray): image to add noise to
sigma (float): stddev of the Gaussian distribution to generate noise
from
Returns:
np.ndarray: same as image but with added offset to each channel
"""
image += np.random.normal(0, sigma, image.shape)
return image
[docs]def elastic_transform(image, alpha, sigma):
"""
Elastic deformation of images as described in [1].
[1] Simard, Steinkraus and Platt, "Best Practices for Convolutional
Neural Networks applied to Visual Document Analysis", in Proc. of the
International Conference on Document Analysis and Recognition, 2003.
Based on gist https://gist.github.com/erniejunior/601cdf56d2b424757de5
Args:
image (np.ndarray): image to be deformed
alpha (list): scale of transformation for each dimension, where larger
values have more deformation
sigma (list): Gaussian window of deformation for each dimension, where
smaller values have more localised deformation
Returns:
np.ndarray: deformed image
"""
assert len(alpha) == len(sigma), \
"Dimensions of alpha and sigma are different"
channelbool = image.ndim - len(alpha)
out = np.zeros((len(alpha) + channelbool, ) + image.shape)
# Generate a Gaussian filter, leaving channel dimensions zeroes
for jj in range(len(alpha)):
array = (np.random.rand(*image.shape) * 2 - 1)
out[jj] = gaussian_filter(array, sigma[jj],
mode="constant", cval=0) * alpha[jj]
# Map mask to indices
shapes = list(map(lambda x: slice(0, x, None), image.shape))
grid = np.broadcast_arrays(*np.ogrid[shapes])
indices = list(map((lambda x: np.reshape(x, (-1, 1))), grid + np.array(out)))
# Transform image based on masked indices
transformed_image = map_coordinates(image, indices, order=0,
mode='reflect').reshape(image.shape)
return transformed_image
[docs]def extract_class_balanced_example_array(image,
label,
example_size=[1, 64, 64],
n_examples=1,
classes=2,
class_weights=None):
"""Extract training examples from an image (and corresponding label) subject
to class balancing. Returns an image example array and the
corresponding label array.
Args:
image (np.ndarray): image to extract class-balanced patches from
label (np.ndarray): labels to use for balancing the classes
example_size (list or tuple): shape of the patches to extract
n_examples (int): number of patches to extract in total
classes (int or list or tuple): number of classes or list of classes
to extract
Returns:
np.ndarray, np.ndarray: class-balanced patches extracted from full
images with the shape [batch, example_size..., image_channels]
"""
assert image.shape[:-1] == label.shape, 'Image and label shape must match'
assert image.ndim - 1 == len(example_size), \
'Example size doesnt fit image size'
assert all([i_s >= e_s for i_s, e_s in zip(image.shape, example_size)]), \
'Image must be larger than example shape'
rank = len(example_size)
if isinstance(classes, int):
classes = tuple(range(classes))
n_classes = len(classes)
assert n_examples >= n_classes, \
'n_examples need to be greater than n_classes'
if class_weights is None:
n_ex_per_class = np.ones(n_classes).astype(int) * int(np.round(n_examples / n_classes))
else:
assert len(class_weights) == n_classes, \
'Class_weights must match number of classes'
class_weights = np.array(class_weights)
n_ex_per_class = np.round((class_weights / class_weights.sum()) * n_examples).astype(int)
# Compute an example radius to define the region to extract around a
# center location
ex_rad = np.array(list(zip(np.floor(np.array(example_size) / 2.0),
np.ceil(np.array(example_size) / 2.0))),
dtype=np.int)
class_ex_images = []
class_ex_lbls = []
min_ratio = 1.
for c_idx, c in enumerate(classes):
# Get valid, random center locations belonging to that class
idx = np.argwhere(label == c)
ex_images = []
ex_lbls = []
if len(idx) == 0 or n_ex_per_class[c_idx] == 0:
class_ex_images.append([])
class_ex_lbls.append([])
continue
# Extract random locations
r_idx_idx = np.random.choice(len(idx),
size=min(n_ex_per_class[c_idx], len(idx)),
replace=False).astype(int)
r_idx = idx[r_idx_idx]
# Shift the random to valid locations if necessary
r_idx = np.array(
[np.array([max(min(r[dim], image.shape[dim] - ex_rad[dim][1]),
ex_rad[dim][0]) for dim in range(rank)])
for r in r_idx])
for i in range(len(r_idx)):
# Extract class-balanced examples from the original image
slicer = [slice(r_idx[i][dim] - ex_rad[dim][0], r_idx[i][dim] + ex_rad[dim][1]) for dim in range(rank)]
ex_image = image[slicer][np.newaxis, :]
ex_lbl = label[slicer][np.newaxis, :]
# Concatenate them and return the examples
ex_images = np.concatenate((ex_images, ex_image), axis=0) \
if (len(ex_images) != 0) else ex_image
ex_lbls = np.concatenate((ex_lbls, ex_lbl), axis=0) \
if (len(ex_lbls) != 0) else ex_lbl
class_ex_images.append(ex_images)
class_ex_lbls.append(ex_lbls)
ratio = n_ex_per_class[c_idx] / len(ex_images)
min_ratio = ratio if ratio < min_ratio else min_ratio
indices = np.floor(n_ex_per_class * min_ratio).astype(int)
ex_images = np.concatenate([cimage[:idxs] for cimage, idxs in zip(class_ex_images, indices)
if len(cimage) > 0], axis=0)
ex_lbls = np.concatenate([clbl[:idxs] for clbl, idxs in zip(class_ex_lbls, indices)
if len(clbl) > 0], axis=0)
return ex_images, ex_lbls
[docs]def extract_random_example_array(image_list,
example_size=[1, 64, 64],
n_examples=1):
"""Randomly extract training examples from image (and a corresponding label).
Returns an image example array and the corresponding label array.
Args:
image_list (np.ndarray or list or tuple): image(s) to extract random
patches from
example_size (list or tuple): shape of the patches to extract
n_examples (int): number of patches to extract in total
Returns:
np.ndarray, np.ndarray: class-balanced patches extracted from full
images with the shape [batch, example_size..., image_channels]
"""
assert n_examples > 0
was_singular = False
if isinstance(image_list, np.ndarray):
image_list = [image_list]
was_singular = True
assert all([i_s >= e_s for i_s, e_s in zip(image_list[0].shape, example_size)]), \
'Image must be bigger than example shape'
assert (image_list[0].ndim - 1 == len(example_size) or image_list[0].ndim == len(example_size)), \
'Example size doesnt fit image size'
for i in image_list:
if len(image_list) > 1:
assert (i.ndim - 1 == image_list[0].ndim or i.ndim == image_list[0].ndim or i.ndim + 1 == image_list[0].ndim),\
'Example size doesnt fit image size'
assert all([i0_s == i_s for i0_s, i_s in zip(image_list[0].shape, i.shape)]), \
'Image shapes must match'
rank = len(example_size)
# Extract random examples from image and label
valid_loc_range = [image_list[0].shape[i] - example_size[i] for i in range(rank)]
rnd_loc = [np.random.randint(valid_loc_range[dim], size=n_examples)
if valid_loc_range[dim] > 0
else np.zeros(n_examples, dtype=int) for dim in range(rank)]
examples = [[]] * len(image_list)
for i in range(n_examples):
slicer = [slice(rnd_loc[dim][i], rnd_loc[dim][i] + example_size[dim])
for dim in range(rank)]
for j in range(len(image_list)):
ex_image = image_list[j][slicer][np.newaxis]
# Concatenate and return the examples
examples[j] = np.concatenate((examples[j], ex_image), axis=0) \
if (len(examples[j]) != 0) else ex_image
if was_singular:
return examples[0]
return examples