dltk.core.io package¶
dltk.core.io.augmentation module¶
-
dltk.core.io.augmentation.
elastic_transform
(image, alpha, sigma)[source]¶ Elastic deformation of images as described in [Simard2003]. .. [Simard2003] Simard, Steinkraus and Platt, “Best Practices for
Convolutional Neural Networks applied to Visual Document Analysis”, in Proc. of the International Conference on Document Analysis and Recognition, 2003. Based on gist https://gist.github.com/erniejunior/601cdf56d2b424757de5Parameters: - image (np.ndarray) – image to be deformed
- alpha (list) – scale of transformation for each dimension larger values have more deformation
- sigma (list) – Gaussian window of deformation for each dimension smaller values have more localised deformation
Returns: deformed image
Return type: np.ndarray
-
dltk.core.io.augmentation.
extract_class_balanced_example_array
(image, label, example_size=[1, 64, 64], n_examples=1, classes=2, class_weights=None)[source]¶ Extract training examples from an image (and corresponding label) subject to class balancing. Returns an image example array and the corresponding label array.
Parameters: - image (np.ndarray) – image to extract class-balanced patches from
- label (np.ndarray) – labels to use for balancing the classes
- example_size (list or tuple) – shape of the patches to extract
- n_examples (int) – number of patches to extract in total
- classes (int or list or tuple) – number of classes or list of classes to extract
Returns: class-balanced patches extracted from bigger images with shape [batch, example_size..., image_channels]
Return type: ex_imgs, ex_lbls
-
dltk.core.io.augmentation.
extract_random_example_array
(image_list, example_size=[1, 64, 64], n_examples=1)[source]¶ Randomly extract training examples from image (and corresponding label). Returns an image example array and the corresponding label array.
Parameters: - image_list (np.ndarray or list or tuple) – image(s) to extract random patches from
- example_size (list or tuple) – shape of the patches to extract
- n_examples (int) – number of patches to extract in total
Returns: random patches extracted from bigger images with same type as image_list with of shape [batch, example_size..., image_channels]
Return type: examples
-
dltk.core.io.augmentation.
flip
(imglist, axis=1)[source]¶ Randomly flip spatial dimensions
Parameters: - imglist (np.ndarray or list or tuple) – image(s) to be flipped
- axis (int) – axis along which to flip the images
Returns: same as imglist but randomly flipped along axis
Return type: np.ndarray or list or tuple
-
dltk.core.io.augmentation.
gaussian_noise
(img, sigma=0.05)[source]¶ Add Gaussian noise to an image
Parameters: - img (np.ndarray) – image to add noise to
- sigma (float) – stddev for normal distribution to generate noise from
Returns: same as image but with added noise
Return type: np.ndarray
-
dltk.core.io.augmentation.
gaussian_offset
(img, sigma=0.1)[source]¶ Add Gaussian offset to an image
Adds the offset to each channel independently
Parameters: - img (np.ndarray) – image to add noise to
- sigma (float) – stddev for normal distribution to generate noise from
Returns: same as image but with added offset to each channel
Return type: np.ndarray
dltk.core.io.preprocessing module¶
-
dltk.core.io.preprocessing.
normalise_one_one
(image)[source]¶ Image normalisation
Normalises image to fit [-1, 1] range
Parameters: image (np.ndarray) – image to be normalised Returns: normalised image Return type: np.ndarray
-
dltk.core.io.preprocessing.
normalise_zero_one
(image)[source]¶ Image normalisation
Normalises image to fit [0, 1] range
Parameters: image (np.ndarray) – image to be normalised Returns: normalised image Return type: np.ndarray
-
dltk.core.io.preprocessing.
resize_image_with_crop_or_pad
(image, img_size=[64, 64, 64], **kwargs)[source]¶ Image resizing
Resizes image by cropping or padding dimension to fit specified size.
Parameters: - image (np.ndarray) – image to be resized
- img_size (list or tuple) – new image size
- kwargs – additional arguments to be passed to np.pad
Returns: resized image
Return type: np.ndarray
dltk.core.io.reader module¶
-
class
dltk.core.io.reader.
AbstractReader
(dtypes, dshapes, name='reader')[source]¶ Bases:
object
Abstract reader
Abstract reader class for data I/O. Provides the queue handling and wraps the specific reader functions to adapt given data types.
-
class
dltk.core.io.reader.
SimpleSITKReader
(dtypes, dshapes, name='simplesitkreader')[source]¶ Bases:
dltk.core.io.reader.AbstractReader
Simple reader class to read sitk files by file path